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Quantum Mutual Entropy for a Multilevel Atom
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We derive an explicit formula for the quantum mutual entropy as a measure of the
total correlations in a multi-level atom interacting with a cavity field. We describe its
theoretical basis and discuss its practical relevance. The effect of the number of levels
involved on the quantum mutual entropy is demonstrated via examples of three-, four-
and five-level atom. Numerical calculations under current experimental conditions are
performed and it is found that the number of levels present changes the general features
of the correlations dramatically.
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1. OVERVIEW

Great progress has recently been made in quantum information theory
(Nielsen and Chuang, 2000). Also, entropy becomes a fundamental quantity to
describe not only uncertainty or chaos of a system but also information carried by
the system (Ohya and Petz, 1993). Compared to the long history of the theoretical
understanding of entropy and entanglement of atom-field systems extending over
many decades (Fichtner and Ohya, 2001), intensive experimental investigations
started only recently involving different systems (Eisert and Plenio, 1999). To
identify the fundamentally inequivalent ways quantum systems can be entangled
is a major goal of quantum information theory (Eisert and Plenio, 1999). It might
be thought that there is nothing new to be said about bipartite entanglement if the
shared state is pure, but in a recent paper (Rekdal, 2004) it has been shown that
exact coherence of the atom is in general never regained for a two-level model

1 Centre for Computational and Theoretical Sciences, Kulliyyah of Science, Malaysia, 53100 Kuala
Lumpur, Malaysia.

2 Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
3 To whom correspondence should be addressed at Centre for Computational and Theoretical Sci-

ences, Kulliyyah of Science, Malaysia, 53100 Kuala Lumpur, Malaysia; e-mail: abdelatyquant@
yahoo.co.uk.

972
0020-7748/07/0400-0972/0 C© 2006 Springer Science+Business Media, LLC



Quantum Mutual Entropy for a Multilevel Atom 973

with a general initial pure quantum state of the radiation field. Also, it has been
shown that the purification of the atomic state is actually independent of the nature
of the initial pure state of the radiation field.

From the viewpoint of the Phoenix and Knight (1988, 1991a,b) entropy for-
malism, the quantum field entropy and entanglement of a coherent field interacting
with a three-level systems have been investigated (Abdel-Aty, 2000, 2003). How-
ever, the method used in those papers cannot be applied when the system is taken
to be initially in a mixed state. A method using quantum mutual entropy to measure
the entanglement in the time development of the two-level system model has been
adopted in Furuichi (1999). The question of how mixed a two-level system and
a field mode may be such that free entanglement arises in the course of the time
evolution according to a Jaynes–Cummings type interaction has been considered
(Bennett et al., 1996; Bose et al., 2001a,b,c; Hill and Wootters, 1997; Nielsen and
Kempe, 2001).

It is important to point out that further insights into the dynamics of the
multi-level systems may be helpful in developing quantum information theory
(Vedral and Plenio, 1998). Recently, there is much interest in multi-level quantum
systems to represent information (Abdel-Aty et al., 2002; Furuichi and Abdel-Aty,
2001; Furuichi and Ohya, 1999; Scheel et al., 2003). It was demonstrated that key
distributions based on multi-level quantum systems are more secure against eaves-
dropping than those based on two-level systems (Furuichi and Ohya, 1999). Key
distribution protocols based on entangled three-level systems were also proposed
(Bose et al., 2001a,b,c). The security of these protocols is related to the violation of
the Bell inequality. The multi-level system provides in this context a much smaller
level of noise (Cerf et al., 2002; Song et al., 2002; Zheng, 1998). Rydberg atoms
crossing superconductive cavities are an almost ideal system to generate entangled
states, and to perform small scale quantum information processing (Bourennane
et al., 2001). In this context entanglement generation of multi-level quantum sys-
tems was also reported (Acin et al., 2002; Bruss and Macchiavello, 2002; Durt
et al., 2003; Kaszlikowski et al., 2000; Vedral and Plenio, 1998).

Our motivation is to generalize the quantum mutual entropy, usually em-
ployed in the two-level system, to the multi-level system interacting with a cavity
field. This is because the quantum mutual entropy can be thought of as the orig-
inal correlation measure of mixed (rather than simply pure) input states. Using
an appropriate representation and without using the diagonal approximation, an
explicit expression for quantum mutual entropy when the system starts from a
mixed state is derived. Although various special aspects of the quantum mutual
entropy have been investigated previously, the general features of the dynam-
ics, when a multi-level system is considered, have not been treated before and
the present paper therefore fills a gap in the literature. The physical situation
which we shall refer to, belongs to the experimental domains of cavity quantum
electrodynamics.
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The plan of the remainder of the paper as follows. In Section 2, we go through
a more rigorous set of definitions leading up to the exact solution of the multi-
level system and give exact expression for the unitary operator Ut involved. In
Section 3, we consider one of the intermediate definitions namely the quantum
mutual entropy and develop several results related to this quantity. These include
a more convenient expression that automatically takes into account an arbitrarily
number of atomic levels, where the atom is initially in the mixed state, depending
on both the value of the total correlations and on the measurements required for
its definition. In Section 4, we show how difficult it is to derive rigorously the
quantum mutual entropy involving more than three-levels. The final part of this
article is devoted to some important developments of the quantum mutual entropy
and we close the paper with a list of open questions.

2. THE MULTI-LEVEL SYSTEM

We start by devoting this section to a brief discussion on the multi-level atom
(Abdel-Hafez et al., 1987, 1989) being it the model describing the interaction
between a single multi-level atom and a quantized cavity field. To set the stage, we
first begin by describing the multilevel-atom model. Therefore, the physical system
on which we focus is an m-level. The atom interacts with a high Q-cavity which
sustain a number of modes of the field with frequencies �j, j = 1, 2, . . . , m − 1.
We denote by âj and â

†
j the annihilation and creation operators for the field mode

j , and ωj is the frequency associated with the level of the atom. We assume that the
mode i affects the transition between the upper atomic level and the level (i + 1).
Therefore in the rotating wave approximation we can cast the Hamiltonian of the
system in the form (Abdel-Hafez et al., 1989) (h = 1)

Ĥ = Ĥ0 + Ĥ1, (1)

where the Hamiltonian for the interacting system Ĥ0 is given by

Ĥ0 =
m−1∑

j=1

�j â
†
j âj +

∑

i=1,2,m...

ωi |i〉〈i|.

The interaction Hamiltonian between the atomic system and the cavity field is
given by

Ĥ1 =
m−1∑

j=1

(λj (Ŝ1,j+1âj + h.c.)).

The transition in the m-level atom is characterized by the coupling λi . The operator
Ŝii describes the atomic population of level |i〉A with energy ωi , (i = 1, 2, . . . , m)
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and the operator Ŝij = |i〉〈j |, (i �= j ) describes the transition from level |i〉A to
level |j 〉A.

We have applied the rotating wave approximation discarding the rapidly
oscillating terms and selecting the terms that oscillate with minimum frequency
(Vogel and de Matos Filho, 1995). The resulting effective Hamiltonian may be
written as

Ĥ0 = (ω1 − �)I +
m−1∑

j=1

�j (â†
j âj − Ŝj+1,j+1), (2)

Ĥ1 = �Ŝ11 +
m−1∑

j=1

λi(Ŝ1,j+1âi + Ŝj+1,1â
†
i ) (3)

We have used
∑m

i=1 = I . Here we assume that the detuning parameter � is given
by

� = ω1 − ωj+1 − �j, j = 1, 2, . . . . . . m − 1.

It can be shown that Ĥ0 and Ĥ1 are constants of motion,

[Ĥ0, Ĥ1] = [Ĥ , Ĥ0] = 0. (4)

We assume that, before entering the cavity, the atom is prepared in a mixed state.
Mixed states arise when there is some ignorance with respect to the system, so
that consideration has to be given to the possibility that the system is in any one
of several possible states, Si i , each with some probability, γi , of being realized.
To this end, the initial state of the atom can be written in the following form

ρ = (γ Ŝ11 + γ2Ŝ22 + γ3Ŝ33 + · · · + γmŜmm) ∈ SA, (5)

where γi ≥ 0, and
∑m

i=1 γi = 1. In terms of quantum information processes, an
understanding of mixed states is essential, as it is almost inevitable that the ideal
pure states will interact with the environment at some stage.

Also we suppose that the initial state of the field is given by

|ω̄1〉 =
( ∞∑

n1,n2,...=0

bn1bn2 . . . bnm−1 |n1, n2 . . . nm−1〉
)

∈ SF , (6)

where bni
= 〈� |ni〉, b2

ni
being the probability distribution of photon number for

the initial state. The continuous map E∗
t describing the time evolution between the

atom and the field is defined by the unitary operator generated by Ĥ such that

E∗
t : SA → SA ⊗ SF ,

E∗
t ρ = Ût (ρ ⊗ � )Û ∗

t ,
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Ût ≡ exp

(
− i

h

∫
Ĥ (t)dt

)
. (7)

where ϕ = |ϕ1〉〈ϕ1|. Bearing these facts in mind we find that the evolution operator
Ût takes the next from

Ût ≡ exp (− (ω1 − �) t)

⎡

⎣
m−1∏

j=1

exp (−i�j N̂j t)

⎤

⎦ exp

(
−i

∫ t

0
Ĥtdt

)
. (8)

where N̂j = â
†
j âj − Sj+1,j+1. The first two factors in Eq. (11) produce phases that

will not affect the results that follow, while calculations of the third factor show
that it takes the following compact matrix form

exp (−iĤ1t) = exp
(
− i

2
�t

)[ Û0

Û1

Û ∗
1

Û2

]
, (9)

where Û0 is the single element matrix {Û1} which takes the following form

Û11 = cos µ̂nt − i�

2

sin µ̂nt

µ̂n

. (10)

The matrix Û ∗
1 is the 1 × (m − 1) row matrix {Û1k}, where

Û1k = −i
sin µ̂nt

µ̂n

λkâk, k ∈ {1, 2, 3, . . . , m − 1} (11)

and UBA its Hermitian conjugate. Finally the matrix Û2 is the (m − 1) × (m − 1)
square matrix {Ûij } of which the elements can be written as

Ûij = δij exp

(
− i

2
�t

)
− λiâ

†
i v

−1

(
cos µ̂nt − exp

(
− i

2
�t

)
+ i�

2

sin µ̂nt

µ̂n

)
λj âj ,

(12)
with i, j = 1, 2, . . . , m − 1 and

µ̂n =
(

�2

4
+

m−1∑

i=1

λ2
i âi â

†
i

) 1
2

, v−1 =
m−1∑

i=1

λ2
i âi â

†
i (13)

Having obtained the explicit form of the unitary operator Ut , we are therefore able
to discuss the total correlations of the system.

3. DERIVATION OF THE QUANTUM MUTUAL ENTROPY

The study of mutual entropy in classical system was extensively done after
Shannon (Gelfand and Yaglom, 1959; Kolmogorov, 1963). In quantum systems,
there have been several definitions of the mutual entropy for classical input and
quantum output (Belavkin and Stratonovich, 1973; Holevo, 1973; Ingarden, 1976)
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and the fully quantum mechanical mutual entropy by means of the relative entropy
has been investigated (Levitin, 1991; Ohya, 1983). On the other hand, quantifying
the amount of entanglement between quantum systems is a recent pursuit that has
attracted a diverse range of researchers (Abdel-Aty, 2000; Abdel-Aty and Obada,
2003; Abdel-Aty et al., 2002; Bennett et al., 1996; Bose et al., 2001a,b,c; Furuichi
and Abdel-Aty, 2001; Furuichi and Ohya, 1999; Hill and Wootters, 1997; Nielsen
and Kempe, 2001; Phoenix and Knight, 1988, 1991a,b; Rekdal et al., 2004; Scheel
et al., 2003; Vedral and Plenio, 1998). When we look at the entanglement of the
mixed state as a whole, we can calculate the relative entropy of entanglement
(Vedral, 2004a,b) and for quantifying the total correlations we use the quantum
mutual information.

In this section, we will apply the results obtained previously to derive the
quantum mutual entropy for a single multi-level atom interacting with a cavity
field without using the diagonal approximation method adapted in Abdel-Aty
et al. (2002) and Furuichi and Abdel-Aty (2001). With a certain unitary operator,
the final state after the interaction between the atom and the field is given by

E∗
t ρ = Ut (ρ ⊗ � ) U ∗

t

= γ1Ut |a� 〉
〈
�, a|U ∗

t +
m−1∑

i=1

γiUt |bi,�

〉
〈�, bi |U ∗

t . (14)

Therefore the von Neumann entropy of the total system is given by

S(ε∗
t ρ) = −

m∑

i=1

γi log γi. (15)

Taking the partial trace over the atomic system, we obtain

ρF
t = trAE∗

t ρ.

Then the von Neumann entropy for the reduced state S(ρF
t ) is computed by

S
(
ρF

t

) = −
m2∑

i=1

λF
i (t) log λF

i (t) , (16)

where {λF
i (t)} are the solutions of

det[ρ(t̂) − λ(t̂)N (t̂)] = 0, (17)

where ρ(t̂) and N (t̂) are m2 × m2 matrices having the following elements

[ρ(t̂)]ij = 〈ψi(t)|ρF
t |ψj (t)〉, (i, j = 1, 2, 3, . . . m2),

[N (t̂]ij = 〈ψi(t)|ψj (t)〉, (i, j = 1, 2, 3, . . . m2),
(18)
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and |ψj (t)〉 are the eigenfunctions of the following eigenvalue problem
ρF

t |ψi(t)〉 = λF
i (t)|ψi (t)〉.

On the other hand, the final state of the atomic system is given by taking the
partial trace over the field system:

ρA
t = trFE∗

t ρ.

Then the von Neumann entropy for the reduced state S(ρA
t ) is computed by

S
(
ρA

t

) = −
m∑

i=1

λA
i (t) log λA

i (t) , (19)

where λA
i (t) can be calculated by obtaining the eigenvalues of the reduced atomic

state. Using the above equations, the final expression for the quantum mutual
entropy for the m-level system takes the following form

IE∗
t ρ

(
ρA

t , ρF
t

) ≡ trE∗
t ρ

(
log E∗

t ρ − log
(
ρA

t ⊗ ρF
t

))

=
m∑

i=1

γi log γi −
m2∑

i=1

λF
i (t) log λF

i (t)

−
m∑

i=1

λA
i (t) log λA

i (t) . (20)

It turns out to be rather easy to derive an analytic expression for the quantum
mutual entropy for any given system, since with the help of Eq. (20) it is possible
to study the quantum mutual entropy of any m-level system when the system starts
from its mixed state.

This seems significant, and one then wonders whether the trend might con-
tinue with the general multi-atom (or ions) case. That is, whether one might be
able to consider more than one atom and still be able to calculate the quantum
mutual entropy. Also, one might wonder whether a similar effect could carry over
to different field states. That would be very nice because one could contemplate
different protocols for different initial states of the field. To go a step further to-
wards a deterministic quantum mutual entropy, we note a peculiar effect in the
present paper: we get more correlations with increasing m (number of levels).
Indeed in the limit that γi ∼ 0, i > 1, (i.e. γ1 ≈ 1), the quantum mutual entropy is
only twice of the quantum field (atomic) entropy. In the general case i.e., γ1 �= 1),
the final state does not necessarily become a pure state, so that we need to make use
of IE∗

t ρ(ρA
t , ρF

t ) in the present model. Thus our initial setting enables us to discuss
the variation of the quantum mutual entropy for different values of the parameter
γi of the initial atomic system. A related model allowing an analytic treatment
of the quantum mutual entropy as well as valuable insight, namely the two-level
atom (m = 2) has been discussed in Abdel-Aty et al. (2002) and Furuichi and
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Fig. 1. The evolution of the quantum mutual entropy IE∗
t ρ (ρA

t , ρF
t ) as a function

of the scaled time. The mean photon number n̄ = 5, and the detuning parameter �

has zero value, where, from bottom to top depicts three-, four- and five-level atom,
respectively.

Abdel-Aty (2001). An example of a truly mixed state for which the entanglement
manipulations have been proven to be asymptotically reversible has been reported
in Audenaert et al. (2003).

Here we focus on the time development of the quantum mutual entropy for
some special cases such as three-, four- and five-level atoms. In Fig. 1, we plot the
function IE∗

t ρ(ρA
t , ρF

t ) which describes the quantum mutual entropy in the case
when the field is initially in a coherent state with a mean photon number n̄ = 5,
and the mixed state parameters γ1 = 0.99. In this case we see that, IE∗

t ρ(ρA
t , ρF

t )
oscillates around values nearly equals the maximum values (2 ln(m)). Let us
remark that, in the pure state case, the von Neumann entropy is limited by ln(m),
and then IE∗

t ρ(ρA
t , ρF

t ) reduces to 2 ln(m). From this figure we can say that the
maximum value of IE∗

t ρ(ρA
t , ρF

t ) is increased as the number of levels is increased.
Nevertheless, the minimum values lie within the region between the two

maximum values occurring in a similar way for different number of levels, such
that with higher m the minimum values of the quantum mutual entropy occur at
earlier times. In fact, for some higher values of m there were no persisting periods
found to lie between the maximum and minimum values. These results strongly
indicate that the higher number of levels give higher mutual entropy as well as more
oscillations. Figure 2, indicates that when the mean photon number is increased
further the minimum values of the quantum mutual entropy occur at later times.
The reason why maximum value of the quantum mutual entropy is 2 ln(m) and not
ln(m), is that, the quantum mutual information quantifies the total correlations,
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Fig. 2. The same as in Fig. 1 but now n̄ = 10.

both classical and quantum, where one ln(m) goes to the classical correlations and
the other ln(m) goes to the quantum correlations (i.e. entanglement). In Fig. 3,
we consider the quantum mutual entropy as a function of the scaled time with the
field initially in a Fock state. The Fock state of the electromagnetic field is very
difficult to produce in experiments. Nevertheless, these states are very important
in quantum optics because of their intrinsic quantum nature. This case is quite
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Fig. 3. The evolution of the quantum mutual entropy IE∗
t ρ (ρA

t , ρF
t ) as a function of

the scaled time. In this figure we consider the Fock state with n = 5, where, from
bottom to top depicts three-, four- and five-level atom, respectively.
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interesting because the quantum mutual entropy function oscillates around the
maximum and minimum values as time goes on. We have shown here a new
phenomena where the periodic oscillations occur irrespective of number of atomic
levels involved. This reflects the various influences of the initial states of the field.
A slight change in n therefore, dramatically alters the quantum mutual entropy. It
should be noted that for a special choice of the initial state setting, the situation
becomes interesting where we find that a higher multi-level atom interacting with
an initially coherent field exhibits superstructures instead of the usual first-order
revivals.

It is worth mentioning that the dynamics of quantum multi-level systems has
always been of interest, but has recently attracted even more attention because
of application in quantum computing. Several systems have been suggested as
physical realizations of quantum bits allowing for the needed control manipula-
tions, and for some of them the first elementary steps have been demonstrated in
experiments (Braunstein and Lo, 2001).

4. CONCLUSION

Summarizing, we have shown how to determine the maximum and minimum
possible values of the quantum mutual entropy for multi-level atoms interacting
with a cavity field. The forms of states that achieve these maximum and minimum
values are the same as those for the case of the von Neumann entropy if we
consider the pure state case. We have identified the relation between the quantum
mutual entropy and von Neumann entropy. The general formula we have derived
may carry over to any multi-level system. For the examples we have examined
the quantum mutual entropy for three-, four- and five-level atoms, we have found
that as the number of levels increases the maximum values of the quantum mutual
entropy also increases, but these values are achieved for earlier times when the
number of levels is increased accordingly.

An open and very interesting question is whether the quantum mutual entropy
technique that we have described here can be transferred to other systems in
which atomic and cavity decays are present. In those systems it may be possible
to augment or simplify the definition of the quantum mutual entropy making its
applications more accessible.
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